Broadgate Big Data Dictionary


A couple of years back we were getting to grips with big data and thought it would be worthwhile putting a couple of articles together to help explain what the fuss was all about. Big Data is still here and the adoption of it is growing so we thought it would be worthwhile updating and re-publishing. Let us know what you think?

We have been interested in Big Data concepts and technology for a while. There is a great deal of interest and discussion with our clients and associates on the subject of obtaining additional knowledge & value from data.

As with most emerging ideas there are different interpretations and meanings for some of the terms and technologies (including the thinking that ‘big data’ isn’t new at all but just a new name for existing methods and techniques).

With this in mind we thought it would be useful to put together a few terms and definitions that people have asked us about recently to help frame Big Data.

We would really like to get feedback, useful articles & different views on these to help build a more definitive library of Big Data resources.


Big Data Analytics is the processing and searching through large volumes of unstructured and structured data to find hidden patterns and value. The results can be used to further scientific or commercial research, identify customer spending habits or find exceptions in financial, telemetric or risk data to indicate hidden issues or fraudulent activity.

Big Data Analytics is often carried out with software tools designed to sift and analyse large amounts of diverse information being produced at enormous velocity. Statistical tools used for predictive analysis and data mining are utilised to search and build algorithms.

Big Data

The term Big Data describes amounts of data that are too big for conventional data management systems to handle. The volume, velocity and variety of data overwhelm databases and storage. The result is that either data is discarded or unable to be analysed and mined for value.

Gartner has coined the term ‘Extreme Information Processing’ to describe Big Data – we think that’s a pretty good term to describe the limits of capability of existing infrastructure.

There has always been “big data” in the sense that data volumes have always exceeded the ability for systems to process it. The tool sets to store & analyse and make sense of the data generally lag behind the quantity and diversity of information sources.

The actual amounts and types of Big Data this relates to is constantly being redefined as database and hardware manufacturers are constantly moving those limits forward.

Several technologies have emerged to manage the Big Data challenge. Hadoop has become a favourite tool to store and manage the data, traditional database manufacturers have extended their products to deal with the volumes, variety and velocity and new database firms such as ParAccel, Sand & Vectorwise have emerged offering ultra-fast columnar data management systems. Some firms, such as Hadapt, have a hybrid solution utilising tools from both the relational and unstructured world with an intelligent query optimiser and loader which places data in the optimum storage engine.

Business Intelligence

The term Business Intelligence(BI) has been around for a long time and the growth of data and then Big Data has focused more attention in this space. The essence of BI is to obtain value from data to help build business benefits. Big Data itself could be seen as BI – it is a set of applications, techniques and technologies that are applied to an entities data to help produce insight and value from it’s data.

There are a multitude of products that help build Business Intelligence solutions – ranging from the humble Excel to sophisticated (aka expensive) solutions requiring complex and extensive infrastructure to support. In the last few years a number of user friendly tools such as Qlikview and Tableau have emerged allowing tech-savvy business people to exploit and re-cut their data without the need for input from the IT department.

Data Science

This is, perhaps, the most exciting area of Big Data. This is where the Big Value is extracted from the data. One of our data scientist friends described it as follows: ” Big Data is plumbing and that Data Science is the value driver…”

Data Science is a mixture of scientific research techniques, advance programming and statistical skills (or hacking), philosophical thinking (perhaps previously known as ‘thinking outside the box’) and business insight. Basically it’s being able to think about new/different questions to ask, be technically able to intepret them into a machine based format, process the result, interpret them and then ask new questions based from the results of the previous set…

A diagram by blogger Drew Conway  describes some of the skills needed – maybe explains the lack of skills in this space!


In addition Pete Warden (creator of the Data Science Toolkit) and others have raised caution on the term Data Science “Anything that needs science in the name is not a real science” but confirms the need to have a definition of what Data Scientists do.


Databases can generally be divided into structured and unstructured.

Structured are the traditional relational database management systems such as Oracle, DB2 and SQL-Server which are fantastic at organising large volumes of transactional and other data with the ability to load and query the data at speed with an integrity in the transactional process to ensure data quality.

Unstructured are technologies that can deal with any form of data that is thrown at them and then distribute out to a highly scalable platform. Hadoop is a good example of this product and a number of firms now produce, package and support the open-source product.

Feedback Loops

Feedback loops are systems where the output from the system are fed back into it to adjust or improve the system processing. Feedback loops exist widely in nature and in engineering systems – think of an oven – heat is applied to warm to a specific temperature and is measured by a thermostat – once the correct temperature is reached the thermostat informs the heating element and it shuts down until feedback from the thermostat says it is getting too cold and it turns on again… and so on.

Feedback loops are an essential part of extracting value from Big Data. Building in feedback and then incorporating Machine Learning methods start to allow systems to become semi-autonomous, this allows the Data Scientists to focus on new and more complex questions whilst testing and tweaking the feedback from their previous systems.


Hadoop is one of the key technologies to support the storage and processing of Big Data. Hadoop emerged from Google and its distributed Google File System and Mapreduce processing tools. It is an open source product under the Apache banner but, like Linux, is distributed by a number of commercial vendors that add support, consultancy and advice on top of the products.

Hadoop is a framework for running applications on large clusters of commodity hardware. The Hadoop framework transparently provides applications both reliability and data motion. Hadoop implements a computational paradigm named map/reduce, where the application is divided into many small fragments of work, each of which may be executed or re-executed on any node in the cluster. In addition, it provides a distributed file system that stores data on the compute nodes, providing very high aggregate bandwidth across the cluster. Both map/reduce and the distributed file system are designed so that node failures are automatically handled by the framework.

So Hadoop could almost be seen as a (big) bucket where you can throw any form and quantity of data into it and it will organise and know where that data resides and can retrieve and process it. It also accepts that there may be holes in the bucket and can patch them up by using additional resources to patch itself up – all in all very clever bucket!!

Hadoop runs on a scheduling basis so when a question is asked it breaks up the query and shoots them out to different parts of the distributed network in parallel and then waits and collates the answers.


Hive provides a high level, simple, SQL type language to enable processing of and access to data stored in Hadoop files. Hive can provide analytical and business intelligence capability on top of Hadoop. The Hive queries are translated into a set of MapReduce jobs to run against the data. The technology is used by many large technology firms in their products including Facebook and Last.FM. The latency/batch related limitations of MapReduce are present in Hive too but the language allows non-Java programmers to access and manipulate large data sets in Hadoop.

Machine Learning

Machine learning is one of the most exciting concepts in the world of data. The idea is not new at all but the focus on utilising feedback loops of information and algorithms that take actions and change depending on the data without manual intervention could improve numerous business functions. The aim is to find new or previously unknown patterns & linkages between data items to obtain additional value and insight. An example of machine learning in action is Netflix which is constantly trying to improve its movie recommendation system based on a user’s previous viewing, their characteristics and also the features of their other customers with a similar set of attributes.


Mapreduce is a framework for processing large amounts of data across a large number of nodes or machines.
Map Reduce diagram (courtesy of Google)

Mapreduce works by splitting out (or mapping) requests into multiple separate tasks to be performed on many nodes of the system and then collates and summarises the results back (or reduces) to the outputs.

Mapreduce based on the java language and is the basis of a number of the higher level tools (Hive, Pig) used to access and manipulate large data sets.

Google (amongst others) developed and use this technology to process large amounts of data (such as documents and web pages trawled by its web crawling robots). It allows the complexity of parallel processing, data location and distribution and also system failures to be hidden or abstracted from the requester running the query.


MPP stands for massively parallel processing and it is the concept which gives the ability to process the volumes (and velocity and variety) of data flowing through systems. Chip processing capabilities are always increasing but to cope with the faster increasing amounts of data processing needs to be split across multiple engines. Technology that can split out requests into equal(ish) chunks of work, manage the processing and then join the results has been difficult to develop.  MPP can be centralised with a cluster of chips or machines in a single or closely coupled cluster or distributed where the power of many distributed machines are used (think ‘idle’ desktop PCs overnight usage as an example). Hadoop utilises many distributed systems for data storage and processing and also has fault tolerance built in which enables processing to continue with the loss of some of those machines.


NoSQL really means ‘not only SQL’, it is the term used for database management systems that do not conform to the traditional RDBMS model (transactional oriented data management systems based on the ACID principle). These systems were developed by technology companies in response to challenges raised by the high volumes of data. Amazon, Google and Yahoo built NoSQL systems to cope with the tidal wave of data generated by their users.


Apache Pig is a platform for analysing huge data sets. It has a high-level language called Pig Latin which is combined with a data management infrastructure which allows high levels of parallel processing. Again, like Hive, the Pig Latin is compiled into MapReduce requests. Pig is also flexible so additional functions and processing can be added by users for their own specific needs.

Real Time

The challenges in processing the “V”‘s in big data (volume, velocity and variety) have meant that some requirements have been compromised. It the case of Hadoop and Mapreduce this has been the interactive or instant availability of the results. Mapreduce is batch orientated in the sense that requests are sent for processing where they are then scheduled to be run and then the output summarised. This works fine for the original purposes but now the ability to become more real-time or interactive are growing. With a ‘traditional’ database or application users expect the results to be available instantly or pretty close to instant. Google and others are developing more interactive interfaces to Hadoop. Google has Drill and Twitter has release Storm. We see this as one of the most interesting areas of development in the Big Data space at the moment.


Over the next few months we have some guest contributors penning their thoughts on the future for big data, analytics and data science.  Also don’t miss Tim Seears’s (TheBigDataPartnership) article on maximising value from your data “Feedback Loops” published here in June 2012.

For the technically minded Damian Spendel also published some worked examples using ‘R’ language on Data Analysis and Value at Risk calculations.

These are our thoughts on the products and technologies – we would welcome any challenges or corrections and will work them into the articles.


RSS Feed Subscribe to our RSS Feed

Posted on : 28-10-2014 | By : richard.gale | In : Data

Tags: , , , , , , , , , , ,

Write a comment